
ironman Documentation
Release 0.5.2

Giordon Stark

Mar 03, 2022

CONTENTS

1 Ironman 3
1.1 What is Ironman? . 3
1.2 Features . 3
1.3 Getting Started . 3
1.4 Tutorial . 5
1.5 To Do . 5
1.6 Ideas . 5

2 Background 7
2.1 Goals . 7
2.2 Overview . 7

3 Cookbook 15
3.1 Handling IPBus packets . 15
3.2 Random Number Generator . 17

4 API Reference 19
4.1 ironman package . 19

5 Indices and tables 27

Python Module Index 29

Index 31

i

ii

ironman Documentation, Release 0.5.2

This documentation is for at least 0.5.2.

Contents:

CONTENTS 1

ironman Documentation, Release 0.5.2

2 CONTENTS

CHAPTER

ONE

IRONMAN

1.1 What is Ironman?

Ironman is a general purpose software toolbox to be run on L1Calo hardware with embedded processors (SoCs).

Look how easy it is to use

>>> import ironman
>>> # Get your stuff done
>>> ironman.engage()

1.2 Features

• Be awesome

• Make things faster

1.3 Getting Started

1.3.1 Installing

Install ironman by running

pip install ironman

3

https://badge.fury.io/py/ironman
http://ironman.readthedocs.org/en/latest/intro.html
https://travis-ci.org/kratsg/ironman
https://codecov.io/gh/kratsg/ironman
https://landscape.io/github/kratsg/ironman/master

ironman Documentation, Release 0.5.2

1.3.2 Developing

If it is your first time. . .

git clone git@github.com:kratsg/ironman
cd ironman && mkvirtualenv ironman
pip install -r requirements.txt

and then afterwards. . .

workon ironman
python setup.py develop
... do work here ...
pip uninstall ironman

Testing

tox

or with

py.test

1.3.3 Contributing

• Issue Tracker

• Source Code

1.3.4 Support

If you are having issues, let us know.

1.3.5 Releasing

1. Do some work on your package (i.e. fix bugs, add features, etc)

2. Make sure the tests pass. Run tox (for just tests) tox -e coverage (for tests and coverage)

3. Update the __version__ number in your package’s **init**.py file

4. “Freeze” your code by creating a tag: git tag -a x.y.z -m "Your message here..."

5. Run python setup.py sdist upload to upload the new version of your package to PyPI

4 Chapter 1. Ironman

https://github.com/kratsg/ironman/issues
https://github.com/kratsg/ironman
ironman/__init__.py

ironman Documentation, Release 0.5.2

1.4 Tutorial

Since we will be predominantly using Twisted within the Zynq to manage the Reactor workflow (“callbacks”), I
suggest reading through this tutorial on your own time to get up to speed on how it works and some details of sockets.

I’m following the guide based on sandman here

1.5 To Do

• split udp and tcp into different, separate protocols: http://stackoverflow.com/questions/33224142/
twisted-protocol-that-simultaneously-handles-tcp-and-udp-at-once

1.6 Ideas

• make it like twisted.web - we build Request objects which need to find Resource objects that provide actions
(maybe too complicated, try and simplify?) link

1.4. Tutorial 5

http://krondo.com/?page_id=1327
https://www.jeffknupp.com/blog/2013/08/16/open-sourcing-a-python-project-the-right-way/
http://stackoverflow.com/questions/33224142/twisted-protocol-that-simultaneously-handles-tcp-and-udp-at-once
http://stackoverflow.com/questions/33224142/twisted-protocol-that-simultaneously-handles-tcp-and-udp-at-once
http://twistedmatrix.com/trac/browser/trunk/twisted/web

ironman Documentation, Release 0.5.2

6 Chapter 1. Ironman

CHAPTER

TWO

BACKGROUND

Ironman is a software infrastructure that will standardize communication protocols on chips with embedded proces-
sors. In particular, this was written for use in L1Calo with IPBus, but was written to maintain modularity and flexibility
to evolve with changing needs.

To explain this approach, we first started with our vision for the software with an overview. Below, we explain each
part in more detail.

2.1 Goals

We make it as easy as possible for anyone to put their pieces in to the general framework while maintaining the overall
procedure. This software will

• provide a wide array of standard networking protocols for reading and writing packets

• allow for implementation of custom communication protocols for reading and writing the various hardware
components

• allow for definition of custom hardware maps which specify the layout of the entire board

• use a single-threaded reactor model, an event-driven model, which is a global loop that fires listeners when
certain events have triggered

2.2 Overview

7

ironman Documentation, Release 0.5.2

An external client, such as a human or a monkey, is tasked with the job of communicating a transaction request or
a status query of a piece of hardware (ATLAS Client). This is sent, for example, as an IPBus command to the board
running ironman software. This request is received by a server actively listening and then dispatches this request to
the System-on-Chip client. The System-on-Chip client is made self-aware using hardware definitions and dispatches
this request along a callback chain to the Internal Communications Interface. It is at this point that the software handles
the customized communication to fulfill the request of the biological being controling the ATLAS Client. After this,
the response is formed, transferred back to the server who will transmit the information back to the client.

2.2.1 Server

The server has a few jobs to do upon receipt of a packet. As the server is actively listening, it is going to plug itself
into the reactor and kick off the callback chain for us (known as deferreds or promises).

The server knows the format of the packet entirely and will unpack the data into a Request Packet Object that will be
used by the rest of the software. It is at this point that a few checks are done, such as checking that the data can be
unpacked as well as making sure the headers are valid.

If the basic sanity checks look good, then it must decide what to do with the packet. If the request requires communica-
tion with the hardware, then it will pass along the packet to the SoC Client to dispatch the request. If it simply requires
information about the history of packets sent (such as a Resend Packet), then it will return the packets it records in
history.

This leads to the other part of the server which is to maintain a log of all inbound/request and outbound/response
packets. It is at this point which the board communicates with the outside world and makes it a suitable place to
implement the history recording.

For those who are more familiar or learn better with some code:

>>> # grab pieces of ironman
>>> from ironman.server import ServerFactory
>>> from ironman.packet import IPBusPacket
>>> from ironman.history import History
>>> history = History()
>>>
>>> # we need deferreds and reactor from twisted
>>> from twisted.internet import reactor
>>> from twisted.internet.defer import Deferred
>>>
>>> # build up our callback chain
>>> def callbacks():
... return Deferred().addCallback(IPBusPacket).addCallback(history.record)
>>>

(continues on next page)

8 Chapter 2. Background

ironman Documentation, Release 0.5.2

(continued from previous page)

>>> # listen for IPBus packets over UDP at port 8888
>>> reactor.listenUDP(8888, ServerFactory('udp', callbacks))
<<class 'ironman.server.UDP'> on 8888>
>>>
>>> # listen for IPBus packets over TCP at port 8889
>>> reactor.listenTCP(8889, ServerFactory('tcp', callbacks))
<<class 'twisted.internet.tcp.Port'> of <class 'ironman.server.TCPFactory'> on 8889>

and of course, this is all building up our logic. To actually start up the server, we simply need:

start the global loop
reactor.run()

Notice how that independent of which transport is being used to communicate with the server, the same callback chain
is being executed correctly.

2.2.2 Hardware Interface

The job of the Hardware Interface is to parse the hardware definitions transferred to the board and build up a cached,
global mapping of address to properties about the address. In Python terminology, this is a giant dictionary. It must

2.2. Overview 9

ironman Documentation, Release 0.5.2

assess that a single address is not taken up by two different hardware definitions (no conflicts) and that the hardware
map is parseable and valid (the latter has yet to be defined yet). It will also provide a way to compute the checksum of
the hardware map files to ensure that the board is running on the same definitions that the monkey has communicated
to the board with.

The Hardware Manager is our primary means of interfacing. We can demonstrate via another code example:

>>> xadcyml = """ nodes:
... -
... id: temperature
... address: 0x00000000
... nodes:
... - &offset {id: offset, address: 0x0, permissions: 1}
... - &raw {id: raw, address: 0x1, permissions: 1}
... - &scale {id: scale, address: 0x2, permissions: 1}
... -
... id: vccint
... address: 0x00000010
... nodes: [*raw, *scale]
... -
... id: vccaux
... address: 0x00000020
... nodes: [*raw, *scale]
... -
... id: vccbram
... address: 0x00000030
... nodes: [*raw, *scale]
... -
... id: vccpint
... address: 0x00000040
... nodes: [*raw, *scale]
... -
... id: vccpaux
... address: 0x00000050
... nodes: [*raw, *scale]
... -
... id: vccoddr
... address: 0x00000060
... nodes: [*raw, *scale]
... -
... id: vrefp
... address: 0x00000070
... nodes: [*raw, *scale]
... -
... id: vrefn
... address: 0x00000080
... nodes: [*raw, *scale]"""
>>>
>>> # initialize a manager to use for everyone that needs it
>>> from ironman.hardware import HardwareManager, HardwareMap
>>> manager = HardwareManager()
>>> # add a map to the manager
>>> manager.add(HardwareMap(xadcyml, 'xadc'))

10 Chapter 2. Background

ironman Documentation, Release 0.5.2

2.2.3 Client

The job of the client here is to analyze the packet more thoroughly. If the client is handling the packet, then it must
be a request packet. It will then communicate with the Hardware Interface to determine whether or not the transaction
packet is good: valid address, valid permissions, valid data. If all of these things pass, it then passes the packet along
to the Internal Communications which will build up a response.

It should be noted that the client is not allowed to modify the response packet at all. Only the Server and the Internal
Communications are allowed to do this.

In ironman, the client is known as Jarvis (the assistant, get it?). Jarvis is used like so:

>>> # now let's make jarvis
>>> from ironman.communicator import Jarvis, ComplexIO
>>> jarvis = Jarvis()
>>> # tell Jarvis about our hardware manager
>>> jarvis.set_hardware_manager(manager)

In particular, Jarvis is one of the easiest things to set up since it contains a lot of internal logic to route requests
appropriately and execute controllers for you. In this way, Jarvis is a lot like a router.

2.2. Overview 11

ironman Documentation, Release 0.5.2

2.2.4 Internal Communications

Lastly, the Internal Communications is primarily custom code written by the developers to do exactly that: communi-
cate with the board. Depending on how the board is set up, there may be a virtual filesystem or raw pointers or custom
drivers that the code will need to access. Since this is something that will vary on a board-by-board basis, we leave
most of this code up to the user and only provide a few simple cases for file reading and writing.

Continuing on with our code examples as above, you might have your driver create a virtual file system for the
temperature. So how would you create a custom communications controller that Jarvis knows about that handles the
requests?

>>> # register a controller with jarvis
>>> @jarvis.register('xadc')
... class XADCController(ComplexIO):
... __base__ = "/sys/devices/soc0/amba@0/f8007100.ps7-xadc/iio:device0/"
... __f__ = {
... 0: __base__+"in_temp0_offset",
... 1: __base__+"in_temp0_raw",
... 2: __base__+"in_temp0_scale",
... 17: __base__+"in_voltage0_vccint_raw",
... 18: __base__+"in_voltage0_vccint_scale",
... 33: __base__+"in_voltage1_vccaux_raw",
... 34: __base__+"in_voltage1_vccaux_scale",
... 49: __base__+"in_voltage2_vccbram_raw",
... 50: __base__+"in_voltage2_vccbram_scale",
... 65: __base__+"in_voltage3_vccpint_raw",
... 66: __base__+"in_voltage3_vccpint_scale",
... 81: __base__+"in_voltage4_vccpaux_raw",
... 82: __base__+"in_voltage4_vccpaux_scale",
... 97: __base__+"in_voltage5_vccoddr_raw",
... 98: __base__+"in_voltage5_vccoddr_scale",
... 113: __base__+"in_voltage6_vrefp_raw",
... 114: __base__+"in_voltage6_vrefp_scale",
... 129: __base__+"in_voltage7_vrefn_raw",
... 130: __base__+"in_voltage7_vrefn_scale"
... }

And you are done. This will read from /sys/devices/soc0/amba@0/f8007100.ps7-xadc/
iio:device0/in_temp0_offset if an IPBus read request is recieved for address 0x0. Similarly, it will read
from in_voltage6_vrefp_raw if the address is 0x71 (which is 113 in decimal).

12 Chapter 2. Background

ironman Documentation, Release 0.5.2

In this particular example, it is assumed you had added a hardware definitions for the xADC controller which is being
registered to Jarvis. Each file path is associated with an address that you would explicitly map out. A future iteration
of how hardware gets defined should alleviate the numerous redefinitions of addresses that occur.

2.2. Overview 13

ironman Documentation, Release 0.5.2

14 Chapter 2. Background

CHAPTER

THREE

COOKBOOK

3.1 Handling IPBus packets

It is common to use ironman to parse and build ipbus packets. Expecting this major usage of the software being
written, we use the awesome construct package to build an IPBusConstruct builder/parser to make it easier for
everyone to use.

In the examples that follow, we will use (and assume) a big-endian aligned data packet that contains the IPBus com-
mands.

data = '\x20\x00\x00\xf0\x20\x00\x01\x0f\x00\x00\x00\x03'

which is a single read transaction request from the base address 0x3. In particular, it contains three 32-bit words:

Word Hex Meaning
0 0x200000f0 IPBus Packet Header
1 0x200001f0 Read Transaction Header
2 0x00000003 Base Address of Read

3.1.1 Parsing an IPBus Packet

>>> from ironman.constructs.ipbus import IPBusConstruct
>>> data = b'\x20\x00\x00\xf0\x20\x00\x01\x0f\x00\x00\x00\x03'
>>> p = IPBusConstruct.parse(data)
>>> print(p)
Container:

endian = (enum) BIG 240
header = Container:

protocol_version = 2
reserved = 0
id = 0
byteorder = 15
type_id = (enum) CONTROL 0

transactions = ListContainer:
Container:

header = Container:
protocol_version = 2
id = 0
words = 1
type_id = (enum) READ 0
info_code = (enum) REQUEST 15

(continues on next page)

15

https://github.com/construct/construct/

ironman Documentation, Release 0.5.2

(continued from previous page)

address = 3
data = None

status = None
resend = None

>>>

3.1.2 Building an IPBus Packet

Because of duck-typing, any object can make do when passing into the construct builder. See the construct docs for
more information here. In this case, we will take the original packet which has a packet id 0x0 in the header and
update it to 0x1

>>> from ironman.constructs.ipbus import IPBusConstruct
>>> data = b'\x20\x00\x00\xf0\x20\x00\x01\x0f\x00\x00\x00\x03'
>>> p = IPBusConstruct.parse(data)
>>> p.header.packet_id = 0x1
>>> new_data = IPBusConstruct.build(p)
>>> print(repr(new_data))
b' \x00\x00\xf0 \x00\x01\x0f\x00\x00\x00\x03'
>>>

Note that when building an IPBus Packet, an error would be raised if we cannot build it. For example, if we tried to
bump the protocol version to a non-valid one

>>> from ironman.constructs.ipbus import IPBusConstruct
>>> data = b'\x20\x00\x00\xf0\x20\x00\x01\x0f\x00\x00\x00\x03'
>>> p = IPBusConstruct.parse(data)
>>> p.header.protocol_version = 0x0
>>> new_data = IPBusConstruct.build(p)
Traceback (most recent call last):

...
construct.core.ValidationError: object failed validation: 0

which is letting us know (not a very verbose error) that the 0x0 value is wrong.

3.1.3 Creating a Response Packet

As seen from the above examples, we have a read packet. Let’s pretend the response is 1234. How do we build a
response packet?

>>> from ironman.constructs.ipbus import IPBusConstruct
>>> in_data = b'\x20\x00\x00\xf0\x20\x00\x01\x0f\x00\x00\x00\x03'
>>> in_p = IPBusConstruct.parse(in_data)
>>> out_p = in_p
>>> out_p.transactions[0].data = [int(b"1234".hex(), 16)]
>>> out_data = IPBusConstruct.build(out_p)
Traceback (most recent call last):

...
construct.core.CheckError: check failed during building
>>> out_p.transactions[0].header.info_code = 'SUCCESS'
>>> out_data = IPBusConstruct.build(out_p)
>>> print(repr(out_data))

(continues on next page)

16 Chapter 3. Cookbook

ironman Documentation, Release 0.5.2

(continued from previous page)

b' \x00\x00\xf0 \x00\x01\x001234'
>>>

and our work is done! Notice that it’s not just a matter of setting the data field and building the packet.. we must also
set the info_code field to a SUCCESS to signify that we’re sending a successful response back.

3.2 Random Number Generator

One might like to be able to generate a full test of the ironman suite by setting up fake routes for reading/writing as
a proof-of-concept. I demonstrate such a concept using a lot of different pieces of code here:

>>> from ironman.constructs.ipbus import IPBusConstruct, IPBusWords
>>> from ironman.hardware import HardwareManager, HardwareMap
>>> from ironman.communicator import Jarvis
>>> from ironman.packet import IPBusPacket
>>> from twisted.internet.defer import Deferred
>>> from ironman.constructs.ipbus import IPBusWord
>>> import random, struct
>>> random.seed(1)
>>>
>>> hardware_map = '''
... nodes:
... -
... id: random_number_generator
... address: 0x00000000
... nodes:
... - {id: generate, address: 0x0, permissions: 1}
... - {id: low_val, address: 0x1, permissions: 2}
... - {id: high_val, address: 0x2, permissions: 2}
... '''
...
>>> j = Jarvis()
>>> manager = HardwareManager()
>>>
>>> manager.add(HardwareMap(hardware_map, 'main'))
>>> j.set_hardware_manager(manager)
>>>
>>> @j.register('main')
... class RandomNumberGeneratorController:
... __low__ = 0
... __high__ = 9
... def generate(self):
... return IPBusWord.build(random.randint(self.__class__.__low__, self.__class__._
→˓_high__))
...
... def read(self, offset, size):
... if offset == 0x0: return ''.join(self.generate() for i in range(size))
... elif offset == 0x1: return IPBusWord.build(self.__class__.__low__)
... elif offset == 0x2: return IPBusWord.build(self.__class__.__high__)
...
... def write(self, offset, data):
... if offset == 0x0: pass
... elif offset == 0x1: self.__class__.__low__ = IPBusWord.parse(data[0])
... elif offset == 0x2: self.__class__.__high__ = IPBusWord.parse(data[0])

(continues on next page)

3.2. Random Number Generator 17

ironman Documentation, Release 0.5.2

(continued from previous page)

... return

...
>>> def buildResponsePacket(packet):
... packet.response.transactions[0].header.info_code = 'SUCCESS'
... return IPBusConstruct.build(packet.response)
...
>>> def printPacket(raw):
... print("raw: {0:s}".format(repr(raw.hex())))
... packet = IPBusConstruct.parse(raw)
... print(packet)
... print("data: {0:d}".format(struct.unpack('=I', IPBusWords.build(packet.
→˓transactions[0].data))[0]))
...
>>> d = Deferred().addCallback(IPBusPacket).addCallback(j).
→˓addCallback(buildResponsePacket).addCallback(printPacket)
>>> d.callback(bytearray.fromhex('200000f02000010f00000002')) # read the upper limit
raw: '200000f02000010000000009'
Container:

endian = (enum) BIG 240
header = Container:

protocol_version = 2
reserved = 0
id = 0
byteorder = 15
type_id = (enum) CONTROL 0

transactions = ListContainer:
Container:

header = Container:
protocol_version = 2
id = 0
words = 1
type_id = (enum) READ 0
info_code = (enum) SUCCESS 0

address = None
data = ListContainer:

b'\x00\x00\x00\t'
status = None
resend = None

data: 9

18 Chapter 3. Cookbook

CHAPTER

FOUR

API REFERENCE

4.1 ironman package

4.1.1 Subpackages

ironman.constructs package

Submodules

ironman.constructs.ipbus module

ironman.constructs.ipbus.ControlHeaderStruct = <TransformData <Struct>>
Struct detailing the Control Header logic

ironman.constructs.ipbus.ControlStruct = <Renamed ControlTransaction <Struct>>
Struct detailing the Control Action logic

Note:

• RMWBits: Should compute via 𝑋 ⇐ (𝑋 ∧𝐴) ∨ (𝐵 ∧ (!𝐴))

• RMWSum: Should compute via 𝑋 ⇐ 𝑋 +𝐴

ironman.constructs.ipbus.IPBusConstruct = <Renamed IPBusPacket <Struct>>
Top-level IPBus Construct which is a packet parser/builder

ironman.constructs.ipbus.PacketHeaderStruct = <TransformData <Struct>>
Struct detailing the Packet Header logic

byteorder is 0xf if big-endian and 0x0 if little-endian

ironman.constructs.ipbus.ResendStruct = <Renamed ResendTransaction +nonbuild <Struct +nonbuild>>
Struct detailing the Resend Action logic

ironman.constructs.ipbus.StatusResponseStruct = <Renamed StatusTransaction <Struct>>
Struct detailing the Status Action logic

19

ironman Documentation, Release 0.5.2

Module contents

4.1.2 Submodules

ironman.communicator module

This file implements all of the various communications one might need to do.

Jarvis provides a callback structure that looks up (in its registry) for an appropriate communication protocol.

class ironman.communicator.ComplexIO
Bases: object

read(offset, size)

write(offset, data)

class ironman.communicator.Jarvis
Bases: object

This is the general communication slave.

Jarvis is what lets us pass around communications to various routes/protocols while keeping the details separated
from us. Here’s an example of how one might use it:

>>> from ironman.communicator import Jarvis, SimpleIO
>>> # create a Jarvis instance to manage what we want to register
>>> j = Jarvis()
>>> # tell Jarvis to register this class for the given route
>>> @j.register('fpgaOne')
... class FileOne(SimpleIO):
... __f__ = '/path/to/fileOne'
...
>>> # tell Jarvis to register this class for the given route
>>> @j.register('fpgaTwo')
... class FileTwo(SimpleIO):
... __f__ = '/path/to/fileTwo'
...
>>> # print the available registered classes
>>> import pprint
>>> pprint.pprint(j.registry)
{'fpgaOne': <class 'ironman.communicator.FileOne'>,
'fpgaTwo': <class 'ironman.communicator.FileTwo'>}

Jarvis does the wrapping for Jarvis.register() so that a class defined at run-time is automatically in-
serted.

parse_address(address)

register(route)

set_hardware_manager(hwmanager)

unregister(route)

class ironman.communicator.SimpleIO
Bases: object

read(offset, size)

write(offset, data)

20 Chapter 4. API Reference

ironman Documentation, Release 0.5.2

ironman.globals module

ironman.hardware module

class ironman.hardware.BlockMemHardwareManager
Bases: ironman.hardware.HardwareManager

get_node(address)

class ironman.hardware.HardwareManager
Bases: dict

add(new_hw_map)
Add the HW map only if it doesn’t exist for a given key, and no address collisions

check_address(address)

check_data(address, data)

find_address(address)

get_checksum(map_name)

get_node(address)

get_route(address)

raw_maps = {}

subtract(route)
Remove the route entirely.

class ironman.hardware.HardwareMap(yml, route)
Bases: dict

isOk()

parse(yml)

class ironman.hardware.HardwareNode(node, hw_map)
Bases: dict

property allowed

property disallowed

property isOk

isValueValid(val)

property permissions

property readable

property writeable

class ironman.hardware.NullHardwareMap
Bases: dict

isOk()

parse(yml)

route = None

class ironman.hardware.NullHardwareNode
Bases: dict

4.1. ironman package 21

ironman Documentation, Release 0.5.2

allowed = {}

disallowed = {}

hw_map = {}

isOk = False

isValueValid = False

permissions = {}

readable = False

writeable = False

ironman.history module

class ironman.history.History(maxlen=100)
Bases: dict

record(packet)

ironman.interfaces module

interface ironman.interfaces.ICommunicationDriver
The standard driver that is expected for all methods of communication on the board

read(offset, size)
Read from the given address (offset) for N bytes (size)

write(offset, value)
Write to the given address (offset) for N bytes (len(value))

interface ironman.interfaces.ICommunicationSlave
Manages the communication with the programmable logic for us

__call__(packet)
A non-blocking I/O call passing along the packet

Returns the responses

__transaction__(transaction)
Handle a single transaction and return the response

parse_address(address)
Parses address and returns what function to call

set_hardware_manager(hwmanager)
Set the hardware manager that the slave communications with

interface ironman.interfaces.IHardwareManager
Our Hardware Maps manager

add(hw_map)
Add the Map object to the Hardware

check_address(address)
Given an address, checks if it is valid

check_data(address, data)
Given an address, checks if the data is a valid value to write

22 Chapter 4. API Reference

ironman Documentation, Release 0.5.2

get_checksum(route)
Look up the checksum for a given map name (route)

get_node(address)
Given an address, return the node associated with it

get_route(address)
Given an address, return the route for it

raw_maps
A dictionary of the maps added so we can keep track which makes it easier to add and remove.

subtract(route)
Remove the route from the hardware manager

interface ironman.interfaces.IHardwareMap
Manages information about a single map, should be an overloaded dictionary

__init__(xml, route)
Initialize a hardware map object by giving it the data to parse and associate it with a route

isOk()
Whether or not the given hardware map is ok. Should just be a loop over IHardwareNode.isOk().

parse(xml)
Parse the xml hardware map data to set things up

route
The route associated for this hardware map.

interface ironman.interfaces.IHardwareNode
Manages information about a single address. Simply a well-defined dictionary.

__init__(node, hw_map)
Initialize the node by giving it the parsed xml data as well as the hw_map

allowed
A list of allowed values for the node.

disallowed
A list of disallowed values for the node.

hw_map
The hardware map this is associated with.

isOk
Is the given node ok? EG: can’t set allowed and disallowed objects at the same time and cannot block a
node from being readable.

isValueValid(val)
Whether the given value is a valid value for the node

permissions
Mark the node’s read/write capabilities.

readable
Is the given node readable?

writeable
Is the given node writeable?

interface ironman.interfaces.IHistory
Enhanced dictionary to store inbound and outbound packet pairs

4.1. ironman package 23

ironman Documentation, Release 0.5.2

record(packet)
record the packet

interface ironman.interfaces.IIPBusPacket
IPBus Packet object

__eq__(other)
Define a way to identify two packets as being equivalent. Best way is to compare the underlying structs

__init__(blob)
Packet is initialized with a data blob to decode. Determine if it is big or little endian.

__ne__(other)
This should just be return not self.__eq__(other).

_raw
The raw request packet

byteorder
The byte-order in the header. Should assert == 0xf.

packet_id
The id of the ipbus packet.

packet_type
The type of packet.

Value Type
0x0 Control
0x1 Status
0x2 Re-send request
0x3-f Reserved

protocol_version
The packet header protocol version. This does not check that the encapsulated transactions also match.

raw
The raw datagram blob.

request
The parsed request packet

reserved
Reserved. Should be 0x0.

response
The data response to be passed along to another function that builds the response packet. This should be a
list [] to append responses to.

24 Chapter 4. API Reference

ironman Documentation, Release 0.5.2

ironman.packet module

class ironman.packet.IPBusPacket(blob)
Bases: object

property byteorder

property packet_id

property packet_type

property protocol_version

property raw

property reserved

ironman.server module

class ironman.server.FauxCP(dgen)
Bases: twisted.internet.protocol.Protocol

dataReceived(data)
After receiving the data, generate the deferreds and add myself to it.

class ironman.server.FauxFactory(dgen)
Bases: twisted.internet.protocol.ServerFactory

buildProtocol(addr)
Create an instance of a subclass of Protocol.

The returned instance will handle input on an incoming server connection, and an attribute “factory”
pointing to the creating factory.

Alternatively, L{None} may be returned to immediately close the new connection.

Override this method to alter how Protocol instances get created.

@param addr: an object implementing L{twisted.internet.interfaces.IAddress}

protocol
alias of ironman.server.FauxCP

ironman.server.ServerFactory(proto, dgen)

class ironman.server.TCP(dgen)
Bases: twisted.internet.protocol.Protocol

dataReceived(data)
After receiving the data, generate the deferreds and add myself to it.

class ironman.server.TCPFactory(dgen)
Bases: twisted.internet.protocol.ServerFactory

buildProtocol(addr)
Create an instance of a subclass of Protocol.

The returned instance will handle input on an incoming server connection, and an attribute “factory”
pointing to the creating factory.

Alternatively, L{None} may be returned to immediately close the new connection.

Override this method to alter how Protocol instances get created.

@param addr: an object implementing L{twisted.internet.interfaces.IAddress}

4.1. ironman package 25

ironman Documentation, Release 0.5.2

protocol
alias of ironman.server.TCP

class ironman.server.UDP(dgen)
Bases: twisted.internet.protocol.DatagramProtocol

datagramReceived(datagram, address)
After receiving a datagram, generate the deferreds and add myself to it.

ironman.utilities module

class ironman.utilities.PrintContext
Bases: construct.core.Construct

ironman.utilities.chunks(mylist, chunk_size)
Yield successive n-sized chunks from a list.

26 Chapter 4. API Reference

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

27

ironman Documentation, Release 0.5.2

28 Chapter 5. Indices and tables

PYTHON MODULE INDEX

i
ironman.communicator, 20
ironman.constructs, 20
ironman.constructs.ipbus, 19
ironman.globals, 21
ironman.hardware, 21
ironman.history, 22
ironman.interfaces, 22
ironman.packet, 25
ironman.server, 25
ironman.utilities, 26

29

ironman Documentation, Release 0.5.2

30 Python Module Index

INDEX

Symbols
__call__() (ironman.interfaces.ICommunicationSlave

method), 22
__eq__() (ironman.interfaces.IIPBusPacket method),

24
__init__() (ironman.interfaces.IHardwareMap

method), 23
__init__() (ironman.interfaces.IHardwareNode

method), 23
__init__() (ironman.interfaces.IIPBusPacket

method), 24
__ne__() (ironman.interfaces.IIPBusPacket method),

24
__transaction__() (iron-

man.interfaces.ICommunicationSlave method),
22

_raw (ironman.interfaces.IIPBusPacket attribute), 24

A
add() (ironman.hardware.HardwareManager method),

21
add() (ironman.interfaces.IHardwareManager

method), 22
allowed (ironman.hardware.NullHardwareNode

attribute), 21
allowed (ironman.interfaces.IHardwareNode at-

tribute), 23
allowed() (ironman.hardware.HardwareNode prop-

erty), 21

B
BlockMemHardwareManager (class in iron-

man.hardware), 21
buildProtocol() (ironman.server.FauxFactory

method), 25
buildProtocol() (ironman.server.TCPFactory

method), 25
byteorder (ironman.interfaces.IIPBusPacket at-

tribute), 24
byteorder() (ironman.packet.IPBusPacket property),

25

C
check_address() (iron-

man.hardware.HardwareManager method),
21

check_address() (iron-
man.interfaces.IHardwareManager method),
22

check_data() (iron-
man.hardware.HardwareManager method),
21

check_data() (iron-
man.interfaces.IHardwareManager method),
22

chunks() (in module ironman.utilities), 26
ComplexIO (class in ironman.communicator), 20
ControlHeaderStruct (in module iron-

man.constructs.ipbus), 19
ControlStruct (in module iron-

man.constructs.ipbus), 19

D
datagramReceived() (ironman.server.UDP

method), 26
dataReceived() (ironman.server.FauxCP method),

25
dataReceived() (ironman.server.TCP method), 25
disallowed (ironman.hardware.NullHardwareNode

attribute), 22
disallowed (ironman.interfaces.IHardwareNode at-

tribute), 23
disallowed() (ironman.hardware.HardwareNode

property), 21

F
FauxCP (class in ironman.server), 25
FauxFactory (class in ironman.server), 25
find_address() (iron-

man.hardware.HardwareManager method),
21

G
get_checksum() (iron-

31

ironman Documentation, Release 0.5.2

man.hardware.HardwareManager method),
21

get_checksum() (iron-
man.interfaces.IHardwareManager method),
22

get_node() (ironman.hardware.BlockMemHardwareManager
method), 21

get_node() (ironman.hardware.HardwareManager
method), 21

get_node() (ironman.interfaces.IHardwareManager
method), 23

get_route() (ironman.hardware.HardwareManager
method), 21

get_route() (ironman.interfaces.IHardwareManager
method), 23

H
HardwareManager (class in ironman.hardware), 21
HardwareMap (class in ironman.hardware), 21
HardwareNode (class in ironman.hardware), 21
History (class in ironman.history), 22
hw_map (ironman.hardware.NullHardwareNode at-

tribute), 22
hw_map (ironman.interfaces.IHardwareNode attribute),

23

I
ICommunicationDriver (interface in iron-

man.interfaces), 22
ICommunicationSlave (interface in iron-

man.interfaces), 22
IHardwareManager (interface in ironman.interfaces),

22
IHardwareMap (interface in ironman.interfaces), 23
IHardwareNode (interface in ironman.interfaces), 23
IHistory (interface in ironman.interfaces), 23
IIPBusPacket (interface in ironman.interfaces), 24
IPBusConstruct (in module iron-

man.constructs.ipbus), 19
IPBusPacket (class in ironman.packet), 25
ironman.communicator

module, 20
ironman.constructs

module, 20
ironman.constructs.ipbus

module, 19
ironman.globals

module, 21
ironman.hardware

module, 21
ironman.history

module, 22
ironman.interfaces

module, 22

ironman.packet
module, 25

ironman.server
module, 25

ironman.utilities
module, 26

isOk (ironman.hardware.NullHardwareNode attribute),
22

isOk (ironman.interfaces.IHardwareNode attribute), 23
isOk() (ironman.hardware.HardwareMap method), 21
isOk() (ironman.hardware.HardwareNode property),

21
isOk() (ironman.hardware.NullHardwareMap

method), 21
isOk() (ironman.interfaces.IHardwareMap method),

23
isValueValid (iron-

man.hardware.NullHardwareNode attribute),
22

isValueValid() (ironman.hardware.HardwareNode
method), 21

isValueValid() (iron-
man.interfaces.IHardwareNode method),
23

J
Jarvis (class in ironman.communicator), 20

M
module

ironman.communicator, 20
ironman.constructs, 20
ironman.constructs.ipbus, 19
ironman.globals, 21
ironman.hardware, 21
ironman.history, 22
ironman.interfaces, 22
ironman.packet, 25
ironman.server, 25
ironman.utilities, 26

N
NullHardwareMap (class in ironman.hardware), 21
NullHardwareNode (class in ironman.hardware), 21

P
packet_id (ironman.interfaces.IIPBusPacket at-

tribute), 24
packet_id() (ironman.packet.IPBusPacket property),

25
packet_type (ironman.interfaces.IIPBusPacket at-

tribute), 24
packet_type() (ironman.packet.IPBusPacket prop-

erty), 25

32 Index

ironman Documentation, Release 0.5.2

PacketHeaderStruct (in module iron-
man.constructs.ipbus), 19

parse() (ironman.hardware.HardwareMap method),
21

parse() (ironman.hardware.NullHardwareMap
method), 21

parse() (ironman.interfaces.IHardwareMap method),
23

parse_address() (ironman.communicator.Jarvis
method), 20

parse_address() (iron-
man.interfaces.ICommunicationSlave method),
22

permissions (ironman.hardware.NullHardwareNode
attribute), 22

permissions (ironman.interfaces.IHardwareNode at-
tribute), 23

permissions() (ironman.hardware.HardwareNode
property), 21

PrintContext (class in ironman.utilities), 26
protocol (ironman.server.FauxFactory attribute), 25
protocol (ironman.server.TCPFactory attribute), 26
protocol_version (iron-

man.interfaces.IIPBusPacket attribute), 24
protocol_version() (ironman.packet.IPBusPacket

property), 25

R
raw (ironman.interfaces.IIPBusPacket attribute), 24
raw() (ironman.packet.IPBusPacket property), 25
raw_maps (ironman.hardware.HardwareManager at-

tribute), 21
raw_maps (ironman.interfaces.IHardwareManager at-

tribute), 23
read() (ironman.communicator.ComplexIO method),

20
read() (ironman.communicator.SimpleIO method), 20
read() (ironman.interfaces.ICommunicationDriver

method), 22
readable (ironman.hardware.NullHardwareNode at-

tribute), 22
readable (ironman.interfaces.IHardwareNode at-

tribute), 23
readable() (ironman.hardware.HardwareNode prop-

erty), 21
record() (ironman.history.History method), 22
record() (ironman.interfaces.IHistory method), 23
register() (ironman.communicator.Jarvis method),

20
request (ironman.interfaces.IIPBusPacket attribute),

24
ResendStruct (in module ironman.constructs.ipbus),

19

reserved (ironman.interfaces.IIPBusPacket attribute),
24

reserved() (ironman.packet.IPBusPacket property),
25

response (ironman.interfaces.IIPBusPacket attribute),
24

route (ironman.hardware.NullHardwareMap attribute),
21

route (ironman.interfaces.IHardwareMap attribute), 23

S
ServerFactory() (in module ironman.server), 25
set_hardware_manager() (iron-

man.communicator.Jarvis method), 20
set_hardware_manager() (iron-

man.interfaces.ICommunicationSlave method),
22

SimpleIO (class in ironman.communicator), 20
StatusResponseStruct (in module iron-

man.constructs.ipbus), 19
subtract() (ironman.hardware.HardwareManager

method), 21
subtract() (ironman.interfaces.IHardwareManager

method), 23

T
TCP (class in ironman.server), 25
TCPFactory (class in ironman.server), 25

U
UDP (class in ironman.server), 26
unregister() (ironman.communicator.Jarvis

method), 20

W
write() (ironman.communicator.ComplexIO method),

20
write() (ironman.communicator.SimpleIO method), 20
write() (ironman.interfaces.ICommunicationDriver

method), 22
writeable (ironman.hardware.NullHardwareNode at-

tribute), 22
writeable (ironman.interfaces.IHardwareNode

attribute), 23
writeable() (ironman.hardware.HardwareNode

property), 21

Index 33

	Ironman
	What is Ironman?
	Features
	Getting Started
	Tutorial
	To Do
	Ideas

	Background
	Goals
	Overview

	Cookbook
	Handling IPBus packets
	Random Number Generator

	API Reference
	ironman package

	Indices and tables
	Python Module Index
	Index

